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Capacitance, admittance, and rectification properties of 
small conductors 
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IBM T J Watson Research Center, P 0 Box 218. Yorktown Heights, NY 10598, USA 

Received 15 September 1993, in final form 1 November 1993 

Abstracl We formulate microscopic expressions for capacitances. admittances and lhe 
rectification properlies for small phase-coherent samples consisting of a number of metallic 
layers separated by insulators. The elechic potential in such a skucture is discussed with lhe 
help of characteristic functions which determine the variation of the microscopic potential inside 
the sample in response to an increase of the elecuo-chemical potential at a contact An electro- 
chemical capacitance matrix is derived which allows for field penemtian into the conductor. 
We discuss the admittance matrix for conductors with nearby capacitors (gates) and analyse 
its magnetic field symmetry. We use the characteristic potentials to discuss the rectification 
properties of a conduction channel in the presence of nearby capacitors. 

1. Introduction 

Modem conductors which are of scientific interest and of technological importance are 
often multilayered stmctures with several metallic regions and doping layers separated by 
insulators. Some of the metallic layers, called gates, are used to define the ‘conductor’ 
and can be used to change its conductance properties. Examples of such conductors are 
various types of transistors [I], quantum point contacts [Z, 31 formed with the help of split 
gates [4], and configurations used to measure the ‘electrostatic Aharonov-Bohm effect’ [5 ] .  
The charges of these metallic layers interact via long-range Coulomb forces. Here we are 
interested in the properties of such a conductor which depend on the mutual coupling of the 
metallic layers used to create it. First we discuss a stmcture consisting only of capacitors 
(see figure 1) and evaluate the differential capacitance matrix. There is no DC transport in 
this arrangement of conductors but in the presence of time-dependent oscillating voltages 
AC currents are induced. The capacitance matrix gives directly the leading-order terms of 
the frequency-dependent admittance. Subsequently we consider metallic layers attached to 
several contacts such that DC transport is permitted. While the DC conductances depend 
only on the equilibrium potential, the transport coefficients which describe the conductor 
and capacitors in the presence of slowly oscillating potentials depend on the quasi-stationary 
non-equilibrium potential distribution. In the presence of AC transport we find that the 
generalization of a capacitance matrix is an emittance matrix which determines the number 
of carriers per unit time emitted by the conductor into a contact. Finally we also discuss 
the role of long-range Coulomb potentials in non-linear DC transport. The leading-order 
non-linear terms of the current-voltage characteristic are expressed in terms of the potential 
which builds up in the conductor and nearby capacitors if a current is driven through the 
sample. 
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Figure 1. Capacitors connected via leads U) elecon reservoirs at electro-chemid potentials 
pk,  k = 1.2, 3. Capacitors 1 and 2 are. in the same plane, capacitor 3 lies in anoiher plane. No 
elechic field lines penelme the surface S. 
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The discussion of an assembly of capacitors shown in figure 1 is interesting. The 
textbook notion which holds that capacitance is determined by the Coulomb law and the 
geometry of the metallic layers assumes that electric fields are completely screened at 
the surface of the conductor. In reality, electric fields penetrate into the conductor. The 
degree of field penetration depends on the screening properties of the conductors. Field 
penetration occurs over a distance of the order of a Thomas-Fermi screening length. This 
is a short distance if the conductor is a good (threedimensional) metal, but can be quite 
large compared to the dimensions of a mesoscopic conductor. Indeed a sufficiently small 
conductor might not be able to screen an extemal field at all. The key point is that any 
degree of field penetration changes the capacitance from a geometrical quantity to an electro- 
chemical and statistical entity which, l i e  the conductance, depends on the properties of the 
conductor. We derive a microscopic expression of the capacitance matrix which takes the 
field penetration into account. 

The electro-chemical nature of capacitance is at the heart of capacitance spectroscopy. 
In these experiments a small AC current is driven through the sample and the capacitance is 
measuml with the help of a capacitance bridge. This method has been used to investigate 
single-electron charging effects of metallic grains embedded in an insulating layer by Lambe 
and Jaklevic [6]. Biittiker [7] considered a single grain and discussed an effective small- 
signal capacitance. Recently, Lafarge et al [81 have carried out an experiment where a 
single ‘electron box’ is coupled capacitively to an extemal circuit. The spectra of quantum 
dots have also been investigated by Ashoori er al [9] with the help of this method. ln 
single-electron tunneling effects, the distinction between electrochemical capacitance and 
electrostatic capacitance has been discussed by van Houten et al [IO]. 

The capacitive measurement of the density of states of a two-dimensional electmn gas by 
Smith el ai [ I  I ]  and discussed by Stem 11 11 provides another illustration of this technique. 
In all these experiments and discussions it is the corrections to the geometrical capacitance 
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which provide the interesting information. Novel applications based on the fact that a 
two-dimensional electron gas cannot screen a transverse field have been suggested [ 121. 

A brief discussion of a mesoscopic capacitor and its admittance was recently given by 
Biittiker, Thomas and P&re 1131. In this discussion the potential was characterized by 
a single parameter on each capacitor plate. The work presented here extends this earlier 
discussion to permit the treatment of an arbitrarily complicated electric potential distribution. 
Despite the fact that the electro-chemical nature of capacitances has been appreciated in the 
perceptive works mentioned already we are not aware of any attempts to provide a general 
theoretical formulation. To be definite we consider an arbitrary number of metallic layers 
each of which is connected to one electron reservoir as shown in figure 1. Each conductor 
is considered to be mesoscopic: electron motion near the capacitor plate and in the lead 
connecting the capacitor to the electron reservoir is subject to elastic scattering and Coulomb 
interaction. To find the differential capacitance we assume that the equilibrium potential 
for a reference state is known. We then investigate the change in the electrostatic potential 
which occurs if the electro-chemical potential of an electron reservoir is changed by a 
small amount. We determine this potential in a (one-loop) random phase approximation 
generalizing a discussion by Levinson [14]. Since we deal with an interacting many- 
electron problem the results depend on the method used to find a solution. Our discussion 
attempts to extract a maximum of information from a few basic principles which apply to 
this problem. First, we consider a volume with a surface S which intersects the reservoirs 
at such a large distance that there are no electrical field lines penetrating the surface. As a 
consequence the total charge Q within the volume enclosed by the surface S is conserved. 
Second, the electrostatic potential and the electro-chemical potentials at the reservoirs are 
only defined up to an arbitrary energy. Thus the potential solution must be invariant if all 
electro-chemical potentials are raised or lowered by the same amount. Third, we use the 
fact that microscopic dynamics obey microreversibility: in the presence of a magnetic field 
the Hamiltonian for this system is invariant under simultaneous reversal of all momenta and 
of the magnetic field. These three principles provide useful constraints which any solution 
of this problem, independent of the particular method used, must obey. The deviations of 
the electro-static potential away from an equilibrium reference state are discussed with the 
help of characteristic functions. which give the microscopic potential in the interior of the 
conductor in response to a variation of the electro-chemical potential at a reservoir. These 
characteristic potential functions have themselves a number of simple properties that can be 
derived from the principles mentioned above. 

From the capacitance matrix we immediately obtain the AC currents which are induced 
in such a system if the electro-chemical potentials (voltages applied to the contacts) are 
subject to slow time-dependent oscillations. For slowly changing voltages, the system is 
driven adiabatically through a sequence of equilibrium states. 

We next consider a more general structure in which one or several metallic layers 
are connected to several contacts. Now current can appear not only as a consequence of 
electric induction but also as a consequence of direct carrier transmission from one contact 
to another. The zero-frequency terms of the admittances are the DC conductances determined 
by the equilibrium reference potential. But the actual potential distribution in the conductor 
and in the nearby capacitors is a time-dependent non-equilibrium potential. For DC transport 
the potential distribution in the presence of transport in the vicinity of impurities has been 
discussed by Landauer [ 151. As a guide to additional work, see Sorbello [ 161. Our discussion 
emphasizes the global behaviour of the potential in the entire structure. In conductors with 
poor screening properties the potential is determined not only by the conduction electrons 
but also by charges induced on nearby capacitors. For conductors with several contacts the 
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leading-order terms of the admittance are not determined by capacitances alone but also by 
kinetic contributions which stem from direct carrier transmission from one contact to another. 
A generalization of the concept of capacitance is thus required: long-range Coulomb forces 
lead to a modification of the number of carriers emitted by the conductor into a contact We 
call the quantity which takes the role of the capacitance an emittance. If direct uansmission 
dominates over induced currents the emittance behaves like an inductance, but if induced 
currents dominate over directly transmitted carriers the emittance is similar to a capacitance. 

Finally we illustrate the role of potentials in such a structure by calculating the leading 
non-linear terms in the I-V characteristic of the conductor for the case of a DC current. 
While, as mentioned already, the linear conductances depend only on the equilibrium 
potential, the non-linear terms in the I-V characteristic contain contributions which depend 
on the transport potential. Again we emphasize that the transport potential, similar to the 
equilibrium potential, is characteristic of the entire structure. 

2. Characteristic potentials 

Figure 1 shows a collection of mesoscopic capacitors labelled k ,  I = 1,2,3, which 
are connected via wires to electron reservoirs with electro-chemical potentials Pk. The 
capacitors might lie in the same plane or might lie in different planes as in a layered system. 
We will treat all capacitors equally treating them as phase coherent mesoscopic smctures. 
In realistic situations one or more capacitors might in fact be macroscopic conductors. First, 
we deal with the situations where. all conductors are capacitors, i.e. there is no DC transport. 
A generalization to conductors with several contacts which permit Dc transport will be 
given below. If the electro-chemical potentials are held constant as function of time we 
have an equilibrium system of electrons interacting via long-range Coulomb forces. The 
equilibrium electrostatic potential U of this system is a complicated function of position r 
and is a function of the electro-chemical potentials pk, 

A small variation dpk of the electro-chemical potentials will bring us from the equilibrium 
state with potential given by equation (1) to a new equilibrium state with potential 

We are interested in the differential capacitance and hence investigate the difference in the 
potentials u([pk + dwk], T )  - U([&d,  r). We expand this potential difference with respect 
to the variations of the electro-chemical potentials 

Here we have introduced the characteristic potential functions 

U k ( T )  = edU([&d r)/dPkldpl=O. 

Figure 2 depicts the conduction band bottom and electro-chemical potentials for two 
capacitors. Figure 2 illustrates the variation of the conduction band bottom given by 
ul(r)dpl in response to an increase in the electro-chemical potential of reservoir 1. The 
characteristic potential functions have the following interesting properties. 

( I )  Forr  deep in reservoir k the local potential must follow the electro-chemical potential 
of that reservoir and hence u ~ ( T )  = 1. 
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Figure 2. Conduction band bltom eU(r) and elecuo-chemical potentiis of two capacitors 
camected via leads lo rWNOin. An increment dlrl of lhe elecuo-chemical potential at Contact 
I changes the potential landscape across lhe capacitor by u ~ ( r )  dpt. The characteristic plential 
function UI(P) is 1 deep inside reservoir 1 and vanishes in reservoir 2. 

(2) A change in the electro-chemical potential of reservoir k cannot affect the potential 
deep inside any other reservoir. Thus for r deep inside reservoir I # k, the characteristic 
function must vanish, u b ( r )  = 0. 

(3) If we change all electro-chemical potentials simultaneously and by an equal amount 
dpi = d p  then we have only changed our (global) energy scale. Hence at every space point 
r the potential U must also change by dp. This implies that the sum of all characteristic 
functions at every space point is equal to 1, 

The three properties of the characteristic functions ux are impollant and will frequently 
be used below. To specify the characteristic functions in detail and in order to be able to 
calculate a capacitance we must now consider the changes in the electron density distribution 
which accompany a change in the electro-chemical potentials. 

The changes in the electron density d n k ( r )  of conductor k consist of two contributions. 
A variation of the electro-chemical potential dpk can be achieved either by a variation of 
the chemical potential or by a variation of the electrostatic potential. An increment dpk at 
fixed electrostatic potential injects an additional carrier density (dn(r, k)/dE)dpx into the 
conductor k. The coefficient &(T, k)/dE is the effective (temperature dependent) density 
of states of conductor k. It is calculated for non-interacting carriers which are subject to 
the effective one-electron potential of the reference state specified by equation (1). The 
carriers which contribute to this density are injected from contact k. Thus dn(r, k)/dE 
characterizes the injection properties of this contact and we will also refer to this quantity 
as the injectivify of contact k .  The excess carriers injected into the various conductors 
give rise to a long-range Coulomb potential. This electra-static potential induces a density 
dnind,k(r) into conductor k. Thus the total density in conductor k is 

&k(r) = (&@. dpk + dni,,d.k(T). (5) 
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The induced density dni.d,k(r) generated by a potential variation dU(r) can be specified by 
the Lindhard [I71 function rIk(r, r'), 

d n i . d , t ( r )  = -Sd'r'nt(r.r')edU(r') = -C jd ' r 'n i ( r , r ' )u ( ( r ' )dp i .  (6) 

The second equation is obtained by expressing the potential variation in terms of the 
characteristic potential functions introduced above. In equation (6) the volume integrals 
can be taken over all space enclosed by the surface S. (This convention applies also to 
subsequent volume integrals in this work.) We will not give a detailed description of a 
classical or quantum mechanical calculation of the Lindhard function. It is a density- 
density correlation function which is long ranged if we deal with a conductor described by 
extended states 1141 and is short ranged if we deal with a conductor which near the Fermi 
energy consists mostly of localized states. Fortunately, to make progress we onIy need a 
few properties of this response function which are a consequence of the charge neutrality 
of our system and are a consequence of microreversibilty. With the help of equation (6) 
we can express the total density variation (equation (5)) in conductor k as a function of the 
electro-chemical potential changes 

1 

From equations (7) and (4) we conclude that the invariance of the charge distribution under 
simultaneous changes in all electro-chemical potentials implies that the integral over the 
second spatial argument of the Lindhard function is qual to the injectivity of reservoir k, 

&(T. k)/dE = d'r'nk(r, T') .  (8) s 

j 

Equation (8) can be viewed [18] as an Einstein relation which connects the density response 
to a chemical potential variation (left-hand side of equation (8)) to the density response to 
an electro-static potential variation (right-hand side of equation (8)). Next we introduce the 
density obtained by integrating the Lindhard function over the first argument 

d n ( k ,  r)/dE = d3r'nt(r', T ) .  (9) 
Equation (9) gives the density of states at point T of carriers which will exit the conductor 
through contact k. The 
Coulomb energy of two charge densities dn(r) and dn(r') is equal to edn(r)dU(r) or 
edn(r')dU(r'), where dU(r) is the potential generated by dn(r') and dU(r') is the 
potential generated by dn(r). As a consequence, the Lindhard function is symmetric in 
its arguments, Q(r' ,  r)  = &(r, r'). Hence the injectivity and emissivity are identical, 
dn(r,k) = dn(k,r). The density response described by the Lindhard function is a 
consequence of a change in the equilibrium potential. Since an equilibrium density is 
an even function of magnetic field, the Lindhard function is also an even function of the 
magnetic field, nk(B,T',T) = nk(-B,r',r). For the conductor of figure I this has 
the consequence that all elements of the capacitance matrix (which we derive below) are 
even functions of the magnetic field. We emphasize that these symmetry properties are 
characteristic for conductors connected to a single reservoir. 

So far we have discussed the induced densities in the conductor. In the insulator (index 
k = 0) separating the capacitors, a potential variation can polarize the insulator and induce 
a charge density 

We call this density of states the emissivity of contact k. 

dnj,d,o(r) = - d3r'ila(r, r')edU(r'). J 
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No external charges reach the insulating region and thus instead of equation (7) we find that 
the volume integral of the Lindhard function over either the first or the second argument 
vanishes 

d3r’no(r‘, r)  = 0. d3r’llo(r. r’) = s s 
Now we write down Poisson’s equation for the potential U. If we differentiate U with 

respect to dfik we find that the characteristic function uk is determined by 
I=N 

- A u ~ ( T )  + 4zeZ d 3 r ‘ C  nI(r, r‘)uk(r‘) = 4rre2(dn(r. k)/dE). (IO) s I=O 

Note that equation (IO) contains the sum of all Lindhard functions of all the conductom 
k = I ,  2, . . . , N and of the insulating region k = 0. The density of states of conductor 
k plays the role of a source term for the characteristic function ut.  Let us for a moment 
replace the source term by a mt charge e8(r -TO) which is concentrated at one point ro. 
Then the solution to equation (IO) is Green’s function g ( r ,  TO). With the help of Green’s 
function we find for the characteristic function 

= d’r‘g(r, r‘)(dn(r‘, k)/dE) = d’r“g(r, ?-’)Ilk(?-‘, 7‘“). s 
Equation (4) implies for Green’s function the property 

/ d3r’g(r, r’) c(dn(r’, k)/dE) = 1. 
k 

The total charge in conductor k is 

dQk = e d’r[(dn(r, k ) )  d/.tk &ind~k(r)]. (13) 1 
Overall charge neutrality of our assembly of conductors implies that the sum of all induced 
charges plus the test charge is zero, xk dQi.d,k + e  = 0. This implies 

Equations (12) and (14) will be used to demonstrate charge and current conservation of the 
results derived below. 

3. The capacitance matrix 

We are now ready to calculate the capacitance coefficients. Using equations (7) and (1 1). 
the total charge (equation (13)) in conductor k can be expressed in terms of the density of 
states and Green’s function. Differentiating the total charge dQk with respect to the voltage 
dK = d/.tl/e gives a capacitance c k ,  = edQk/d/.tl given by 

Cxr = e ’ s  d3r / d3r‘(dn(k, r)/dE) [&&r - 7’) - g(r, r’)(dn(r’, [)/dE)] . (15) 

Equation (15) is a key result of this paper. To arrive at this result we have in the diagonal 
term CXX replaced Jd3r(dn(r, k)/dE) by Jd’r(dn(k, r)/dE). These integrated densities 
are equal independent of whether a magnetic field is applied or not. Equation (15) expresses 
the capacitances in terms of the density of states of non-interacting electrons and the Green’s 
function which mediates interactions. The diagonal capacitances Ckt are. positive. The off- 
diagonal capacitances (also called coefficients of inductance) are negative. On account of 
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equation (12) the sum over all capacitance matrix elements in a row is zero, x, Cxl = 0, 
and due to equation (14) the sum over all elements in the column of the capacitance matrix 
is zero. 

To gain some insight into the magnitude of the effect discussed here we consider a few 
simple but (exactly) solvable examples. Two metallic conductors of large cross section A fill 
the half spaces x > a/2 and x -= -a/2. Neglecting fringe fields we can heat this as a one- 
dimensional problem. The density of states of the conductors are taken to be uniform right 
up to the surfaces. Screening is treated in the Thomas-Fermi approximation: the density 
is locally related to the potential, dnin,j3x(~) = -(dn(k, r)/dE)eU(r) which is equivalent 
to taking llk(v, T‘) = Z(T - r’)dn(k, r’)/dE. We have a Thomas-Fermi screening length 
1;’ = 4rreZdnl/dE for the conductor to the left and a screening length 1;’ = 4rre2dn2/dE 
for the conductor to the right. For this simple case, Green’s function and the characteristic 
functions can be calculated exactly. The characteristic potential functions are shown in 
figure 3. The capacitance C E CII  = C u  = -CZI = -Cl* is 

(16) 

the geometrical capacitance in series with two quantum capacitors determined by the 
Thomas-Fermi screening lengths. Clearly the corrections to the geometrical capacitance 
are a consequence of the fact that the induced potential penetrates the conductors over 
a distance of order of a Thomas-Fermi screening length. The conections have a simple 
interpretation. They are the product of the density of states multiplied by the surface volume 
penetrated by the electric field. The relevant surface volume for this example is the Thomas- 
Fermi screening length times the surface area A. Indeed equation (16) can be written in the 
form 

A/C = 4n(a + 11 +A’) 

( 17) 
1 4xa I 1 
C A i- e2(dnl/dE)hlA eZ(dnZ/dE)12A‘ + 

We emphasize that equation (17) only gives a lower estimate of the corrections of the 
geometrical capacitance. In reality the density of the conductor tends to zero continuously 
as the surface of the conductor is approached and hence cannot immediately Screen out the 
induced field with the bulk screening length. 

Another simple example consists of two-dimensional conductors lying in the y-z- 
plane at x = -a/2 and x = t a / 2 .  Their density of states is a two-dimensional sheet 
density duI.z/dE. The three-dimensional effective densities are given by dnl,z(r) = 
6(x  f. a/2)(du1.2/dE)(p1.2 - eU1,z(rta/2)) where p1.2 are the electro-chemical potentials 
and U(&a/2) is the potential U at x = -a12 and x = +a/2. A two-dimensional gas (much 
smaller in thickness than the Thomas-Fermi screening length) cannot screen the potential. 
U ( x )  is a continuous function. The characteristic functions u1.2 will not take on the value 
1 and zero in these two conductors. With the lengths A,,* = (4ne’(dc1,2/dE))-~ we find 
UI = (a + Az)/(a + A I  + 12)  for x c -a12 and find u1 = I t / (a  +AI + 1 2 )  for x > a/2. 
The capacitance is 

- = _  

where F is the area of the two-dimensional conductors. Again the geometrical capacitance 
is in series with two capacitances determined by the density of states of the electron gases. 
Note that in the discussion of this example we have not explicitly described the contacts 
(reservoirs) connected to the two-dimensional conductors. It is only in the bulk of the 
contacts where we can expect the characteristic potential functions to approach I .  
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Figure 3. Characteristic functions U !  and u2 for two bulk conductors with density of states 
d n l l d E  and d n 2 l d E .  

As a third example we consider a two-dimensional electron gas between two bulk 
conductors. This geometry was also considered in 1121. The bulk conductors labelled 
k = 1 and k = 2 fill the space x < -a12 and x > a12 and the two dimensional conductor 
k = 3 is at x = 0. Unlike the previous examples which could be characterized by a 
single capacitance, this structure needs to be described by a capacitance matrix. For 
simplicity we neglect the penetration of the field into the bulk conductors. The most 
important effect is the lack of screening of the two-dimensional electron gas. As in the 
previous example we describe the two-dimensional electron gas with a density of states 
dn(r)/dE = G(x)(du/dE)(pS - eU(0) )  and a length h = (4ne2(dn/dE))-'. The three 
characteristic functions U )  which need to be calculated are depicted in figure 4. Note that 
the three characteristic functions add up to one. The resulting capacitance matrix is 

In the limit of a small density of states of the two-dimensional electron gas, h -+ CO, the 
capacitance matrix is C = C11 = C22 = -Clz = -Czl = 4irF/a. AI1 other capacitance 
elements of the matrix vanish. In the limit of a very large density of states of the two- 
dimensional electron gas, A << a,  the mutual capacitance of the bulk conductors vanishes 
C12 = C21 + 0 and the non-vanishing elements of the capacitance matrix have magnitude 
Sa Fla. 

The simple examples we have presented illustrate that capacitances are electro-chemical 
entities which depend on the properties of the conductor. If the conductors are placed in a 
magnetic field the capacitances through the density of states become symmetric functions 
of the applied field. In our discussion of the examples we have analysed field penetration 
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Figure 4. Characteristic functions U I .  k = 1.2.3 for a two-dimensional elecmm gas with sheet 
density of sues &/dE between two conductors wilh density of states dnt/dE anA dnrldE. 
Field penetration intn the bulk conducton is neglected. 

into the conductors only with the help of a Thomas-Fermi approximation. Our central 
result (equation (15)) is more general and can be used to investigate more subtle effects. 
The Lindhard function incorporates exchange effects and at large distances decays only 
algebmically [14]. There will, therefore, belong-range effects which stem from the algebraic 
decay of the Lindhard function. The possibility that the thermodynamic density of states 
dn/dp is negative has been reported and linked to interaction properties of the electron gas 
[ I %  

A number of additional effects are possibly worth investigating. A small mesoscopic 
capacitor with a more complicated topology, for instance with a hole penetrated by an 
Ahamnov-Bohm flux, will exhibit a flux-dependent capacitance. Capacitance spectroscopy 
of small islands leads to an effective capacitance which depends on the Coulomb blockade 
of the small island. We will not discuss these possibilities further here, but will now 
investigate the case where one or more of the electro-chemical potentials exhibits time- 
dependent oscillations away from an equilibrium value. 

4. Admittance 

In the presence of slowly oscillating potentials dWk(m) exp(-io?) the assembly of conductors 
is driven through the sequence of equilibrium states U([pk( t ) ] ,  P). For slowly varying 
electro-chemical potentials, the time dependence of U is determined by replacing the 
equilibrium electro-chemical potentials by the timedependent electro-chemical potentials 
pk(T) = fik 3. dpt(t). The quasi-stationary voltage distribution away from the reference 
state is 
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From the relation between charges and electro-chemical potentials dQk = E, Cki(dpi/e) 
we directly obtain the leading-order terms of the admittance 

I k ( o )  = - iode r  = -bCCai(d&(o) /e )  
I 

or 

gki(w) = eIk(w)/dPi(o) = - iock i .  (21) 
Below we discuss within the framework of a scattering theory of electrical conductance an 
approach which gives this result. But first we generalize the discussion given above to the 
case where there are conductors with several contacts. 

The typical experimental arrangement consists of a number of conductors some of which 
are connected to several reservoirs. Different conductors are labelled by arabic numeral 
indices k, I = I ,  2 , 3 , .  . .. The contacts of conductor k are labelled by Greek indices 
a, ,3 = 1,2,3,4. First consider the capacitance matrix for the case that all electro-chemical 
potentials of conductor k are varied in synchronism, dpk. = dpk. Then the discussion given 
above is readily generalized. To each contact ka there belongs a characteristic function Ukm. 
Since the electro-chemical potentials at each conductor are the same we again have an 
equilibrium problem. The contributions of the characteristic functions are additive and the 
capacitance coefficients are 

Anovel situation arises if we now permit the electro-chemical potentials at different contacts 
of conductor k to oscillate independently. In the presence of slowly oscillating electro- 
chemical potentials, dpk.(t), a quasi-stationary non-equilibrium potential distribution is 
established. For slowly oscillating electro-chemical potentials, the potential distribution 
inside the sample is govemed by the time dependence of the external potentials and is 
given by 

edU(T,t) =zUka(T)dPke(f). (23) 
k a  

Now there are two main differences in the admittance compared to equation (21). First, the 
admittance matrix also contains zero-frequency terms which are just the DC conductances, 

dh&) = Skap(0)(dPk,dw)/e). (24) 
0 

The DC conductances [7] gkep(0) can be expressed in terms of transmission probabilities Tkap 
for carriers incident in contact kf? to reach contact ka. As in DC transport the transmission 
probabilities (and reflection probabilities) are a function of the equilibrium (reference) 
potential q,p(U([pk], T ) ) .  The potential distribution (equation (23)) which forms as a 
consequence of transport plays no role in the evaluation of the transmission probabilities. 
But the transport potential distribution is essential if we want to find the leading-order term 
proportional to o of the frequency-dependent admittance. 

If transmission is permitted from one contact to another a change in electro-chemical 
potential at one of the contacts will not only cause capacitive effects but also purely kinetic 
effects. To discuss the response to a slowly oscillating potential we first give a different 
interpretation of the capacitance coefficients. The density of states (&(T, lp)/dE) which 
appears in equation (22) gives the density per unit energy of carriers at point T in response to 
a potential change at contact 6 in conductor I .  This density is characteristic of the injection 
properties of contact fi  as viewed from a point T inside conductor 1. We will henceforth 
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call this density of states the injecrfviry of contact j3 and will call the integrated density 
[d3r(dn(~,1j3)/dE) the injectance of contact 0. The density of states (dn(ko,r)/dE) 
gives the number of carriers per unit energy which after being emitted from point T reach 
contact a in conductor k. Thus this density of states can be viewed as the emissiviry into 
contact o of a source at point I.. The integrated emissivity of charge 

dQk,/dE = e d3rdn(ka, T)/dE J 
is the emittance into contact a of the conductor k. We now see that the capacitance 
coefficients Ck1.p are a meaure of the change in emittance of contact ka in response to an 
electro-chemical potential variation at contact 16. It is the concept of emittance which is 
easily generalized to the situation, where we permit a number of contacts on each conductor. 

A small oscillation of the electro-chemical potential fi&) injects a charge density 
e(dn(T,Zp)/dE)dpII,(r) into conductor 1. A fraction of the carriers which reach point 
I. will eventually reach (through transmission or reflection) contact ka .  These carriers 
have a density of states S,,(dn(ka, T ,  lp)/dE). The Kronecker delta function takes into 
account that direct transmission can only occur within the same conductor. Furthermore, 
the unscreened density of external charges can change the emittance of contact k a  via long- 
range Coulomb forces. Of course this effect occurs even if there is no transmission from 
contact l p  to contact ko. The charge emissivity of contact ka due to Coulomb forces is 
e(dn(ka, T)/dE)u/#(T)dp{p(t), or, if we use the characteristic function expressed with the 
help of Green’s function, equation (11). 

e(dn(ka, T)/dE) 

Integrating these two contributions over the volume enclosed by S gives a charge emittance 
Eklap E edQdt) /d&t)  with 

Exre# = e’&, 1 d3r(dn(ka, I., &WE) 

d3r‘g(r, #)e(dn(T’,  lp)/dE) dplp(t). J 

-ez! d3r /d’r’(dn(ka, v)/dE)g(r, r‘)(dn(T‘, @)/dE). (25) 

If we oscillate the potentials slowly, equation (25) predicts that a current -iwQk, 
leaves the conductor k at contact o. For small frequencies the admittance gkl.@(o) = 
edIka(o)/dp&.o) is given by the DC conductance and the emittance 

(26) 
The first term in equation (25). since it is integrated over the volume, can also be written as 
e’&I(dNk,,p/dE), i.e. a density of states of carriers injected in contact kp reaching contact 
ka. It is a purely kinetic term and, if it dominates the Coulomb term (second term in 
equation (25)). gives a current response which lags behind the voltage. If e26kl(dNxlufi/dE) 
is small compared to the second term of equation (25). the emittance is similar to a 
capacitance. It should be noted that the admittance given by equation (26) is current 
conserving, i.e. &, gm&~) = 0 and Ga gxl,&) = 0. 

As a simple example consider the quantum point contact [2, 31 shown in figure 5 
with contacts labelled I and 2 formed with the help of split gates labelled 3 and 4. (For 
simplicity we label all reservoin in sequence and use only arabic numeral indices.) Suppose 
we oscillate the gate voltage p3. There is of course no transmission from this gate to the 
conductor. The current at contact 1 of the conductor is determined by El,. But the first term 
in equation (25) is zero and El, = C I ~  describes purely capacitive coupling between the 

.?klap(o) = &rgkmp(0) - ioEUag + ~ ( ( w ) ’ ) .  
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Figure 5. Quantum point contact formed with the help of a split gate. The emitlance maIrix for 
chis structure is given by quation (27). 

two conductors. Similarly the current induced into contact 2 is purely capacitive E= = CU. 
By reciprocity if we oscillate the electro-chemical potentials at either contact I or 2, the 
current induced into contact 3 is purely capacitive E31 = C31, E32 = C32. In contrast, the 
current at contact 1 and 2 in response to an oscillating potential at contact 1 contains a 
kinetic contribution and is determined by the full emittance given by equation (25). Thus 
the matrix of transport coefficients multiplying -io in equation (26) is given by 

\ c41 c42 c 4 3  c44 ) 
Current conservation requires that the coefficients in each row and in each column of this 
matrix add up to zero. Thus the sum of the two emittances in each row or column of 
equation (27) is always a capacitance. 

Next we connect the results given above with the discussion of admittances of small 
conductors given by Biittiker, Thomas and P&re [21, 131. According to these authors the 
admittance is determined by the sum of the response to an external potential and the internal 
electrical potential. We assume that deep in the reservoirs the Hamiltonian is separable into 
longitudinal motion and quantized transverse motion. This separable region permits the 
definition of incident and out-going quantum scattering channels. The scattering properties 
of conductor k are assumed to be given in terms of scattering matrices sk.6 which give the 
current amplitudes at contact 01 in response to the incident current amplitudes in contact B.  
The response to an (extemal) electro-chemical potential to leading order in o is [21, 13,221 

(28) 2 &,,do) = -ie w&,(dNke6/dE). 
Here the density of states in terms of the scauering matrix of conductor k is given by 
dNk,~/dE 1d3r(dn(ka, P, @)/dE) is 
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To find the response to an induced oscillating electric potential we consider the scattering 
matrix as a funcfional of the electric potential s a a ~ ( E ,  U ( [ / . q U ( f ) ] ,  r ) ) .  For small 
frequencies, carriers see the instantaneous potential. We can expand U away from its 
equilibrium value 

~ ( ~ P ~ & ) I .  r)  = U ( [ ~ n . l ,  T )  t c w p ( r ) d ~ i p ( t )  
I 

where the uip are the static characteristic potential functions. The current response to the 
internal potential is then found by expanding the scattering matrix away from the time- 
independent equilibrium reference state. A calculation gives [22] 

d"r(dn(ka, r)/dE)ucp(r) (30) 

with a density of states 

Note that the response to the internal potential (equation (30)) is proportional to the 
frequency w. A static change in the internal potential leads from an equilibrium potential 
to another equilibrium potential. However, a static equilibrium potential cannot give rise to 
a current. Since the internal response is already proportional to the frequency the leading- 
order terms of the admittance are determined by the quasi-stationary potential distribution. 
Using equation (I 1) leads to the internal response 

(32) 

Taking into account that the total response of the system is the sum of the internal and 
external response, we find for the admittance to leading order in w the result given by 
equation (26) with an emittance given by equation (3). 

Equation (31) expresses the emissivity into contact k a  in terms of the scattering 
matrix and its functional derivaties. The injectivity of contact ka, (dn (~ ,k f~ ) /dE)  is 
given by an expression similar to equation (31) but with the indices a and ,3 of the 
scattering matrix interchanged. Microreversibilty [20] implies for the scattering matrix 
sx*p(B, E )  = sxsor(-B, E). Consequently, fora conductor with several contacts we have in 
general a reciprocal relationship between injectivites and emissivites (dn(6, r .  ka)/dE) = 
(dn(-B, ka, r)/dE). Similarly the Lindhard functions n,,(r,r'), which give the induced 
density of mobile carriers which eventually reach contact kor are not even functions of the 
magnetic field. But Green's function is determined by the sum of all Lindhard functions 
which is again an even function of magnetic field. Consequently, the symmetry under 
magnetic field reversal of the chracteristic functions uke is determined by the source 
term of Poisson's equation, equation (10). i.e. by the injectivities. As a consequence 
the emittance is not an even function of magnetic field but obeys the reciprocity relation 
Exin,j(B) = Elipe( -B) .  For the conductor of figure 5 with the emittance matrix given 
by equation (27) this has the following interesting consequence: All diagonal coefficients 
of this matrix and in addition C4; = CN are even functions of the magnetic field. All 
other elements of this matrix contain, in addition to a term which is even, a term which 
is odd under magnetic field reversal. For instance, the capacitance coefficient CM obeys 
C d B )  = Cd,(-B) and in general contains terms which are odd under magnetic field 
reversal. Clearly the measurement of capacitance terms which are odd under magnetic field 
reversal would be an interesting experimental test of the ideas presented here. 

Mr', IS) J I S  dE ' 
gifUp(w) E ie2w d r d'r'(dn(ka, T)/dE)g(r, P') 



Capacitance and admittance of small conductors 9375 

5. Rectification properties 

The non-linear current voltage characteristic of a small conductor [23] can also be 
represented in terms of an extemal response and a response to an internal potential like 
the capacitances and admittances discussed above. Non-linearites in metallic mesoscopic 
samples have been analysed by Al’tshuler and Khmelnitskii [24] using diagramatic 
techniques without a self-consistent potential. For transmission through a tunnel contact 
the effect of a potential which changes with increasing applied bias has been investigated 
by Frenkel [25]. Landauer has pointed to the necessity of a self-consistent treatment of 
the internal potential [26]. Below we derive the current-voltage characteristic taking into 
account non-linearities which are a consequence of the increax of the extemal electro- 
chemical potential differences as well as the changing intemal (self-consistent) potential 
distribution. We focus on the leading non-linear correction of the low-voltage ohmic 
behaviour of the sample. The I-V characteristic of a mesoscopic sample is rectifying, 
I ( V )  # - I ( - V ) .  Furthermore, since rectification also depends on the internal potential, 
and since the intemal potential in conductor k depends on the charge distribution of other 
nearby conductors, the rectification properties of a small sample are dependent on its entire 
electric environment. 

To proceed we start again by viewing the scattering matrices as a functional of 
the potential distribution s k , ~ ( E ,  U ( [ M ~ ~ ] ,  P ) )  and expand U away from the equilibrium 
potential distribution. The scattering matrix in the neighbourhood of the equilibrium 
reference state (index 0) is 

s ~ ~ , d E .  e U ( r ) )  = S : - ~ ( E )  + J d 3 r ’ ( 6 s ~ ~ p ( E ) / G e U ( ~ ’ ) ) e d U ( ~ ? .  

Here edU(r) can now again be expressed in terms of the characteristic potential functions 
and the elecuo-chemical potentials of the reservoirs. The total current at probe ka is 

1,. ( e / h )  (33) 

where fio is the Fermi function of the equilibrium reference state in conductor k. To insert 
the Fermi function of the reference state we have made use of the unitarity of the s-matrix. 
The coefficients in equation (33) summed over p or a add up to zero. To proceed we now 
expand equation (33) in powers of the electro-chemical potential deviations dpLcr from the 
equilibrium reference state. We find for the current at contact (1 in conductor k 

\dE(frg - f d  Tr [Ixa(E)&+8 - s~,&. U(T))SimdE3 u(’d)] 
P 

6, = x g 4 d p & )  + (1/2) gXlmouy(dlLl~/e)(dlLmy/e) .  (3) 
P 

The terms linear in the electro-chemical potentials are determined by the DC conductances 

which are a functional of the equilibrium reference potential only. The leading-order non- 
linear terms are given by transport coefficients which are composed of an external response 
and an internal response g k ~ , , p ~  = g;l,,py +&,,apy. The extemal response arises from the 
expansion of the Fermi functions in powers of the electro-chemical potentials and is given 
bY 
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The internal response is a consequence of the change in the potential distribution and is 
given by 

The linear terms are given by the DC conductances and depend only on the potential 
differences existing at conductor k. The non-linear terms in equation (34) depend on 
all deviations of electro-chemical potentials away from the reference state including the 
voltages applied to the capacitors (gates). We deal with a stationary state and there is no 
current at the contact leading away from a capacitor if the capacitor is connected to a single 
reservoir. For a conductor with a single contact the traces in equation (35) and equation (36) 
vanish. Nevenheless since an increase in voltage at a capacitor changes the entire potential 
landscape the nowlinear properties of a conductor do depend on the potentials of nearby 
capacitors. The rectification properties of a conductor depend on other nearby conductors. 
By tuning the gate voltage of a nearby capacitor we can tune the T-I’ characteristic. The 
non-linear tenns also conserve current since 

on account of the unitarity of the total scattering matrix and on account of equation (4). 
Moreover, since these coefficients are composed of both the non-linear response to extemal 
potentials and the non-linear response to internal potentials, a theory which would consider 
only one of these effects [271 cannot be current conserving. Quation (34) can, for instance, 
be used to investigate the departure of the Hall resistance away from quantized values in a 
high-mobility two-dimensional electron gas. 

6. Discussion 

Based on a derivation of the microscopic electric potential we have formulated microscopic 
expressions for the electro-chemical capacitance of highly structured conductors. The 
quasi-stationary potential determines the leading-order frequencydependent terms of the 
admittance. The variation of the local potential also affects crucially the non-linear behaviour 
of a small mesoscopic conductor. To derive the local potential we have used a simple one- 
loop random-phase approximation. In this procedure all response functions are calculated 
exactly. However, the response is to a field which is treated classically. Clearly, many 
more sophisticated schemes are available to treat many electron problems. The scheme 
used here has the benefit that it leads to transparent results which appeal to our physical 
intuition. Even for this simple scheme definite answers for the transport coefficients, except 
in the most simple situations, can be obtained only by using computational tools. It is clearly 
desirable to extend the discussion presented here beyond the quasi-staionary limit. Reference 
[I31 also discusses the charge relaxation resistances of a capacitor connected via leads to 
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reservoirs. Together with the electro-chemical capacitance these resistances determine the 
RC-time. But the charge relaxation requires knowledge of the time dependence of the 
voltage distribution beyond the quasi-stationary time dependence discussed here. 
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